Publications
Publications Dr. Ines Kreuzer
- [ 2023 ]
- [ 2022 ]
- [ 2020 ]
- [ 2017 ]
- [ 2016 ]
- [ 2015 ]
- [ 2014 ]
- [ 2013 ]
- [ 2012 ]
- [ 2006 ]
- [ 2005 ]
- [ 2003 ]
- [ 1999 ]
2023[ to top ]
-
‘Demystifying the Venus flytrap action potential’, New Phytologist, 239(6), 2108–2112, available: https://doi.org/10.1111/nph.19113.(2023)
-
‘DYSCALCULIA, a Venus flytrap mutant without the ability to count action potentials’, Current Biology, 33(3), 589–596.e5, available: https://doi.org/10.1016/j.cub.2022.12.058.(2023)
2022[ to top ]
-
‘A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves’, Current Biology, 32(19), 4255–4263.e5, available: https://doi.org/10.1016/j.cub.2022.08.051.(2022)
-
‘Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap’, Scientific Reports, 12(1), 2851, available: https://doi.org/10.1038/s41598-022-06915-z.(2022)
2020[ to top ]
-
‘The Venus flytrap trigger hair–specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling’, PLOS Biology, 18(12), 1–29, available: https://doi.org/10.1371/journal.pbio.3000964.(2020)
-
‘Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory’, 30(12), 2312–2320.e5, available: https://doi.org/10.1016/j.cub.2020.04.051.(2020)
2017[ to top ]
-
‘Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells’, Proc Natl Acad Sci U S A, 114(18), 4822–4827, available: https://doi.org/10.1073/pnas.1701860114.(2017)
-
‘The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration’, New Phytol, 214(2), 597–606, available: https://doi.org/10.1111/nph.14404.(2017)
2016[ to top ]
-
‘Venus flytrap carnivorous lifestyle builds on herbivore defense strategies’, Genome Res, 26(6), 812–25, available: https://doi.org/10.1101/gr.202200.115.(2016)
-
‘The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake’, Curr Biol, 26(3), 286–95, available: https://doi.org/10.1016/j.cub.2015.11.057.(2016)
2015[ to top ]
-
‘Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula’, New Phytol, 205(3), 1320–9, available: https://doi.org/10.1111/nph.13120.(2015)
-
‘The Venus flytrap attracts insects by the release of volatile organic compounds’, J Exp Bot, 66(11), 3429, available: https://doi.org/10.1093/jxb/erv242.(2015)
-
‘Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps’, Proc Natl Acad Sci U S A, 112(23), 7309–14, available: https://doi.org/10.1073/pnas.1507810112.(2015)
-
‘Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure’, Curr Biol, 25(7), 928–35, available: https://doi.org/10.1016/j.cub.2015.01.067.(2015)
2014[ to top ]
-
‘The Venus flytrap attracts insects by the release of volatile organic compounds’, J Exp Bot, 65(2), 755–66, available: https://doi.org/10.1093/jxb/ert455.(2014)
-
‘Secreted major Venus flytrap chitinase enables digestion of Arthropod prey’, Biochim Biophys Acta, 1844(2), 374–83, available: https://doi.org/10.1016/j.bbapap.2013.11.009.(2014)
2013[ to top ]
-
‘The Dionaea muscipula ammonium channel DmAMT1 provides NH(4)(+) uptake associated with Venus flytrap’s prey digestion’, Curr Biol, 23(17), 1649–57, available: https://doi.org/10.1016/j.cub.2013.07.028.(2013)
-
‘Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3’, Proc Natl Acad Sci U S A, 110(20), 8296–301, available: https://doi.org/10.1073/pnas.1211667110.(2013)
2012[ to top ]
-
‘Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues’, Plant Methods, 8(1), 28, available: https://doi.org/10.1186/1746-4811-8-28.(2012)
-
‘The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms’, Mol Cell Proteomics, 11(11), 1306–19, available: https://doi.org/10.1074/mcp.M112.021006.(2012)
2006[ to top ]
-
‘Ion channels meet auxin action’, Plant Biol (Stuttg), 8(3), 353–9, available: https://doi.org/10.1055/s-2006-924121.(2006)
2005[ to top ]
-
‘Rice K+ uptake channel OsAKT1 is sensitive to salt stress’, Planta, 221(2), 212–21, available: https://doi.org/10.1007/s00425-004-1437-9.(2005)
2003[ to top ]
-
‘Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile’, Proc Natl Acad Sci U S A, 100(20), 11795–800, available: https://doi.org/10.1073/pnas.2032704100.(2003)
-
‘The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays’, J Biol Chem, 278(19), 16973–81, available: https://doi.org/10.1074/jbc.M212720200.(2003)
1999[ to top ]
-
‘Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism’, Proc Natl Acad Sci U S A, 96(21), 12186–91, available: http://www.ncbi.nlm.nih.gov/pubmed/10518597.(1999)