Wie Pflanzen elektrische Felder spüren
07/06/2016Bewegungen in Proteinen mit hoher Orts- und Zeitauflösung zu beobachten: Das ermöglicht eine neue Technik, die Wissenschaftler der Universität Würzburg entwickelt haben. Sie liefern damit neue Einblicke in den Funktionsmechanismus ganz spezieller Proteine.
Die Zellen von Pflanzen, Tieren und Menschen nutzen elektrische Signale, um miteinander zu kommunizieren. Auf diese Weise sorgen Nervenzellen dafür, dass Muskeln in Aktion treten. Aber auch Blätter melden es mit elektrischen Signalen an andere Teile der Pflanze, wenn sie zum Beispiel verwundet wurden und Gefahr durch hungrige Insekten droht.
„Wir fragen uns seit vielen Jahren, mit welchen molekularen Komponenten sich Pflanzenzellen untereinander austauschen und wie sie die Veränderungen der elektrischen Spannung bemerken“, sagt Professor Rainer Hedrich, Inhaber des Lehrstuhls für Molekulare Pflanzenphysiologie und Biophysik an der Universität Würzburg.
Ergebnisse in „Plant Biology“ veröffentlicht
Dieses Thema beschäftigt Hedrich schon seit Mitte der 1980er-Jahre, als er noch Postdoktorand im Labor von Erwin Neher am Max-Planck-Institut in Göttingen war. „Wir haben damals mit Hilfe der Patch-Clamp-Technik in Pflanzenzellen erstmals einen Ionenkanal entdeckt, der durch Kalziumionen und ein elektrisches Feld aktiviert wird.“ 2005 fanden andere Wissenschaftler dann das Gen, das diesem Ionenkanal (Name: TPC1) zu Grunde liegt. Und nun hat wiederum Hedrichs Team den Teil des Kanals identifiziert, der als Sensor für elektrische Spannung funktioniert und den Kanal anschaltet.
Die Details dazu sind im Journal „Plant Biology“ veröffentlicht. Die Fachwelt hat sie aufmerksam registriert, und so wurde der Beitrag mittlerweile von der „
Faculty of 1000
“ hervorgehoben. Diese renommierte Plattform, die wissenschaftliche Veröffentlichungen bewertet, wird von weltweit führenden Fachleuten aus Biologie und Medizin betrieben.Teamwork deckte Kanalfunktion auf
Die Entdeckung des Spannungssensors beruht auf internationalem Teamwork. Erste Unterstützung holte sich Hedrich an seinem eigenen Lehrstuhl, bei Professor Thomas Müller. Der Strukturbiologe erstellte ein dreidimensionales Modell des TPC1-Kanalproteins. Dadurch ließen sich Bereiche im Protein eingrenzen, die als Spannungssensoren in Frage kommen. „Unser Modell zeigte deutlich, dass der TPC1-Kanal aus zwei miteinander verknüpften, fast identischen Proteineinheiten besteht, die beide je einen potenziellen Spannungssensoren formen könnten“, so Müller.
Noch mehr Licht ins Dunkel brachte eine Analyse zur Evolution des TPC1-Gens. Die Würzburger Wissenschaftler Jörg Schulz, Professor für Bioinformatik, und Dirk Becker, Arbeitsgruppenleiter am Julius-von-Sachs-Pflanzenforschungsinstitut, fanden heraus, dass das Gen erst mit der Evolution von Zellen mit Zellkern zum ersten Mal in Erscheinung tritt. Seitdem besitzen es wohl alle Lebewesen, den Menschen eingeschlossen. „Bei der Analyse fiel uns auf, dass sich die zweite Einheit des TPC1-Proteins im Laufe der Jahrmillionen kaum verändert hat. Sie ist bei einfachen Einzellern bis hin zu Pflanzen und Menschen fast identisch“, so Becker.
Mutationen gaben entscheidenden Hinweis
Der Spannungssensor war also in der zweiten Proteineinheit zu suchen. Die Arbeitsgruppe um die Würzburger Elektrophysiologin Irene Marten brachte dann den entscheidenden experimentellen Hinweis: Pflanzen mit Mutationen in einer speziellen Untereinheit des Kanals haben ihre Fähigkeit verloren, auf das elektrische Feld zu reagieren.
„Gemeinsam mit den ehemaligen Würzburger Biophysikern Gerald Schönknecht, der jetzt an der Oklahoma State University in den USA forscht, und Ingo Dreyer, der nun an der University Talca in Chile ist, haben wir dann ein mathematisches Modell erarbeitet. Es kann erklären, wie der elektrische Schalter im TPC1-Kanalprotein auf molekularer Ebene arbeitet“, erklärt Hedrich.
Was der Pflanzenkanal mit Ebola zu tun hat
Wie wirken sich die Mutationen am TPC1-Kanal aus? Nach den Erkenntnissen der Wissenschaftler lassen sie die Pflanze verwundet erscheinen und verändern die Wahrnehmung und Abwehr von Krankheitserregern. Schon in einer Veröffentlichung von 2009 haben die Würzburger gezeigt, dass Pflanzen, die eine hyperaktive Form des Kanals besitzen, in ständiger Alarmbereitschaft sind und überempfindlich auf Verwundungen oder Insektenbefall reagieren.
„Zusammen mit einer Schweizer Arbeitsgruppe untersuchen wir jetzt, durch welche Eingriffe in den krankmachenden Kanal die Pflanze wieder geheilt werden kann“, sagt Hedrich. „Vielleicht finden wir ja dabei auch Neues über den Infektionsweg von Ebola-Viren heraus.“ Denn diese Krankheitserreger nutzen den TPC1-Kanal des Menschen, um sich Zugang zu seinen Zellen zu verschaffen.
“Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.” Dawid Jaslan, Thomas D. Müller, Dirk Becker, Jörg Schultz, Tracey Cuin, Irene Marten, Ingo Dreyer, Gerlad Schönknecht und Rainer Hedrich. Plant Biology 2016, Jun 8. doi: 10.1111/plb.12478
Kontakt
Prof. Dr. Rainer Hedrich, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86100,
hedrich@botanik.uni-wuerzburg.de