Publikationen
Publikationen Prof. Dietmar Geiger
- [ 2023 ]
- [ 2022 ]
- [ 2021 ]
- [ 2020 ]
- [ 2019 ]
- [ 2018 ]
- [ 2017 ]
- [ 2016 ]
- [ 2015 ]
- [ 2014 ]
- [ 2013 ]
- [ 2012 ]
- [ 2011 ]
- [ 2010 ]
- [ 2009 ]
- [ 2005 ]
- [ 2004 ]
- [ 2003 ]
- [ 2002 ]
- [ 2001 ]
2023[ to top ]
-
„Vicia faba SV channel VfTPC1 is a hyperexcitable variant of plant vacuole Two Pore Channels“, Elife, 12, verfügbar unter: https://doi.org/10.7554/eLife.86384.(2023)
-
„The CIPK23 protein kinase represses SLAC1-type anion channels in Arabidopsis guard cells and stimulates stomatal opening“, New Phytol, 238(1), 270–282, verfügbar unter: https://doi.org/10.1111/nph.18708.(2023)
2022[ to top ]
-
„Sugar perception in honeybees“, Front Physiol, 13, 1089669, verfügbar unter: https://doi.org/10.3389/fphys.2022.1089669.(2022)
-
„The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling“, Plant Cell, 34(11), 4232–4254, verfügbar unter: https://doi.org/10.1093/plcell/koac256.(2022)
2021[ to top ]
-
„The Developmental and Genetic Architecture of the Sexually Selected Male Ornament of Swordtails“, Curr Biol, 31(5), 911–922.e4, verfügbar unter: https://doi.org/10.1016/j.cub.2020.11.028.(2021)
-
„Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis“, Curr Biol, 31(16), 3575–3585.e9, verfügbar unter: https://doi.org/10.1016/j.cub.2021.06.018.(2021)
-
„PYL8 ABA receptors of Phoenix dactylifera play a crucial role in response to abiotic stress and are stabilized by ABA“, J Exp Bot, 72(2), 757–774, verfügbar unter: https://doi.org/10.1093/jxb/eraa476.(2021)
2020[ to top ]
-
„CRISPR/Cas 9-Mediated Mutations as a New Tool for Studying Taste in Honeybees“, Chem Senses, 45(8), 655–666, verfügbar unter: https://doi.org/10.1093/chemse/bjaa063.(2020)
2019[ to top ]
-
„Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure“, Elife, 8, verfügbar unter: https://doi.org/10.7554/eLife.44474.(2019)
2018[ to top ]
-
„Sulfate is Incorporated into Cysteine to Trigger ABA Production and Stomatal Closure“, Plant Cell, 30(12), 2973–2987, verfügbar unter: https://doi.org/10.1105/tpc.18.00612.(2018)
-
„A Tandem Amino Acid Residue Motif in Guard Cell SLAC1 Anion Channel of Grasses Allows for the Control of Stomatal Aperture by Nitrate“, Curr Biol, 28(9), 1370–1379.e5, verfügbar unter: https://doi.org/10.1016/j.cub.2018.03.027.(2018)
-
„The Receptor-like Pseudokinase GHR1 Is Required for Stomatal Closure“, Plant Cell, 30(11), 2813–2837, verfügbar unter: https://doi.org/10.1105/tpc.18.00441.(2018)
-
„Mycorrhizal lipochitinoligosaccharides (LCOs) depolarize root hairs of Medicago truncatula“, PLoS One, 13(5), e0198126, verfügbar unter: https://doi.org/10.1371/journal.pone.0198126.(2018)
2017[ to top ]
-
„The fungal UmSrt1 and maize ZmSUT1 sucrose transporters battle for plant sugar resources“, J Integr Plant Biol, 59(6), 422–435, verfügbar unter: https://doi.org/10.1111/jipb.12535.(2017)
-
„Drought-Enhanced Xylem Sap Sulfate Closes Stomata by Affecting ALMT12 and Guard Cell ABA Synthesis“, Plant Physiol, 174(2), 798–814, verfügbar unter: https://doi.org/10.1104/pp.16.01784.(2017)
-
„The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel“, New Phytol, 216(1), 150–162, verfügbar unter: https://doi.org/10.1111/nph.14672.(2017)
-
„Biology of SLAC1-type anion channels - from nutrient uptake to stomatal closure“, New Phytol, 216(1), 46–61, verfügbar unter: https://doi.org/10.1111/nph.14685.(2017)
2016[ to top ]
-
„Protein RS1 (RSC1A1) Downregulates the Exocytotic Pathway of Glucose Transporter SGLT1 at Low Intracellular Glucose via Inhibition of Ornithine Decarboxylase“, Mol Pharmacol, 90(5), 508–521, verfügbar unter: https://doi.org/10.1124/mol.116.104521.(2016)
-
„Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation“, Curr Biol, 26(16), 2213–20, verfügbar unter: https://doi.org/10.1016/j.cub.2016.06.045.(2016)
-
„Abscisic acid controlled sex before transpiration in vascular plants“, Proc Natl Acad Sci U S A, verfügbar unter: https://doi.org/10.1073/pnas.1606614113.(2016)
-
„SLAH3-type anion channel expressed in poplar secretory epithelia operates in calcium kinase CPK-autonomous manner“, New Phytol, 210(3), 922–33, verfügbar unter: https://doi.org/10.1111/nph.13841.(2016)
2015[ to top ]
-
„A Functional EXXEK Motif is Essential for Proton-Coupling and Active Glucosinolate Transport by NPF2.11.“, verfügbar unter: http://europepmc.org/abstract/med/26443378.(2015)
-
„Stomatal Guard Cells Co-opted an Ancient ABA-Dependent Desiccation Survival System to Regulate Stomatal Closure.“, verfügbar unter: https://doi.org/10.1016/j.cub.2015.01.067.(2015)
2014[ to top ]
-
„Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid“, Sci Signal, 7(342), ra86, verfügbar unter: https://doi.org/10.1126/scisignal.2005703.(2014)
-
„A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants“, Trends Plant Sci, 19(1), 5–9, verfügbar unter: https://doi.org/10.1016/j.tplants.2013.08.008.(2014)
-
„A Single-Pore Residue Renders the Arabidopsis Root Anion Channel SLAH2 Highly Nitrate Selective“, Plant Cell, 26(6), 2554–2567, verfügbar unter: https://doi.org/10.1105/tpc.114.125849.(2014)
-
„Adjustment of Host Cells for Accommodation of Symbiotic Bacteria: Vacuole Defunctionalization, HOPS Suppression, and TIP1g Retargeting in Medicago“, The Plant Cell Online, verfügbar unter: https://doi.org/10.1105/tpc.114.128736.(2014)
2013[ to top ]
-
„Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells“, Plant Journal, 74(3), 372–382, verfügbar unter: https://doi.org/10.1111/tpj.12133.(2013)
-
„Conformational changes represent the rate-limiting step in the transport cycle of maize sucrose transporter1“, Plant Cell, 25(8), 3010–3021, verfügbar unter: https://doi.org/10.1105/tpc.113.113621.(2013)
-
„Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3“, Proceedings of the National Academy of Sciences of the United States of America, 110(20), 8296–8301, verfügbar unter: https://doi.org/10.1073/pnas.1211667110.(2013)
-
„C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1“, Mol Plant, 6(5), 1550–63, verfügbar unter: https://doi.org/10.1093/mp/sst008.(2013)
2012[ to top ]
-
„A substrate binding hinge domain is critical for transport-related structural changes of organic cation transporter 1“, Journal of Biological Chemistry, 287(37), 31561–31573, verfügbar unter: https://doi.org/10.1074/jbc.M112.388793.(2012)
-
„Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs)“, Front Plant Sci, 3, 263, verfügbar unter: https://doi.org/10.3389/fpls.2012.00263.(2012)
-
„Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels“, Mol Plant, 5(6), 1409–12, verfügbar unter: https://doi.org/10.1093/mp/sss084.(2012)
-
„NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds“, Nature, 488(7412), 531–534, verfügbar unter: https://doi.org/10.1038/nature11285.(2012)
-
„Anion channels: master switches of stress responses“, Trends Plant Sci, 17(4), 221–9, verfügbar unter: https://doi.org/10.1016/j.tplants.2012.01.009.(2012)
2011[ to top ]
-
„A member of the mitogen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake“, Plant Journal, 68(5), 890–900, verfügbar unter: https://doi.org/10.1111/j.1365-313X.2011.04739.x.(2011)
-
„Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1“, Sci Signal, 4(173), ra32, verfügbar unter: https://doi.org/10.1126/scisignal.2001346.(2011)
-
„A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap“, Proc Natl Acad Sci U S A, 108(37), 15492–7, verfügbar unter: https://doi.org/10.1073/pnas.1112535108.(2011)
-
„Plant sucrose transporters from a biophysical point of view“, Molecular Plant, 4(3), 395–406, verfügbar unter: https://doi.org/10.1093/mp/ssr029.(2011)
2010[ to top ]
-
„Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1“, PLoS Biology, 8(6), verfügbar unter: https://doi.org/10.1371/journal.pbio.1000388.(2010)
-
„AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells“, Plant J, 63(6), 1054–62, verfügbar unter: https://doi.org/10.1111/j.1365-313X.2010.04302.x.(2010)
-
„Sucrose- and H+-Dependent charge movements associated with the gating of sucrose transporter ZmSUT1“, PLoS ONE, 5(9), 1–10, verfügbar unter: https://doi.org/10.1371/journal.pone.0012605.(2010)
-
„K+ transport characteristics of the plasma membrane tandem-pore channel TPK4 and pore chimeras with its vacuolar homologs“, FEBS Letters, 584(11), 2433–2439, verfügbar unter: https://doi.org/10.1016/j.febslet.2010.04.038.(2010)
-
„Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities“, Proceedings of the National Academy of Sciences of the United States of America, 107(17), 8023–8028, verfügbar unter: https://doi.org/10.1073/pnas.0912030107.(2010)
2009[ to top ]
-
„Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair“, Proc Natl Acad Sci U S A, 106(50), 21425–30, verfügbar unter: https://doi.org/10.1073/pnas.0912021106.(2009)
-
„Heteromeric AtKC1·AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions“, Journal of Biological Chemistry, 284(32), 21288–21295, verfügbar unter: https://doi.org/10.1074/jbc.M109.017574.(2009)
2005[ to top ]
-
„Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force“, Journal of Biological Chemistry, 280(22), 21437–21443, verfügbar unter: https://doi.org/10.1074/jbc.M501785200.(2005)
-
„Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-Symport of numerous substrates, including myo-inositol, glycerol, and ribose“, Plant Cell, 17(1), 204–18, verfügbar unter: https://doi.org/10.1105/tpc.104.026641.(2005)
2004[ to top ]
-
„The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development“, Plant Journal, 37(6), 828–838, verfügbar unter: https://doi.org/10.1111/j.0960-7412.2003.02008.x.(2004)
-
„AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner“, Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15621–15626, verfügbar unter: https://doi.org/10.1073/pnas.0401502101.(2004)
-
„Differential regulation of K+ channels in Arabidopsis epidermal and stelar root cells“, Plant, Cell and Environment, 27(8), 980–990, verfügbar unter: https://doi.org/10.1111/j.1365-3040.2004.01201.x.(2004)
-
„Differential Expression of Sucrose Transporter and Polyol Transporter Genes during Maturation of Common Plantain Companion Cells“, Plant Physiology, 134(1), 147–160, verfügbar unter: https://doi.org/10.1104/pp.103.027136.(2004)
2003[ to top ]
-
„The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays“, J Biol Chem, 278(19), 16973–81, verfügbar unter: https://doi.org/10.1074/jbc.M212720200.(2003)
2002[ to top ]
-
„Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis“, Plant Journal, 32(6), 997–1009, verfügbar unter: https://doi.org/10.1046/j.1365-313X.2002.01487.x.(2002)
-
„Outer pore residues control the H+ and K+ sensitivity of the Arabidopsis potassium channel AKT3“, Plant Cell, 14(8), 1859–1868, verfügbar unter: https://doi.org/10.1105/tpc.003244.(2002)
-
„Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis“, Planta, 216(2), 334–344, verfügbar unter: https://doi.org/10.1007/s00425-002-0895-1.(2002)
2001[ to top ]
-
„The pore of plant k+ channels is involved in voltage and ph sensing: Domain-swapping between different k+ channel α-subunits“, Plant Cell, 13(4), 943–952, verfügbar unter: https://doi.org/10.1105/tpc.13.4.943.(2001)