Publikationen
Publikationen Dr. Peter Ache
- [ 2024 ]
- [ 2023 ]
- [ 2022 ]
- [ 2021 ]
- [ 2020 ]
- [ 2019 ]
- [ 2018 ]
- [ 2017 ]
- [ 2016 ]
- [ 2015 ]
- [ 2014 ]
- [ 2013 ]
- [ 2012 ]
- [ 2011 ]
- [ 2010 ]
- [ 2009 ]
- [ 2008 ]
- [ 2007 ]
- [ 2005 ]
- [ 2004 ]
- [ 2003 ]
- [ 2002 ]
- [ 2001 ]
- [ 2000 ]
- [ 1999 ]
2024[ to top ]
-
„S(1) basic leucine zipper transcription factors shape plant architecture by controlling C/N partitioning to apical and lateral organs“, Proceedings of the National Academy of Sciences of the United States of America, 121(7), e2313343121-e2313343121, verfügbar unter: https://doi.org/10.1073/pnas.2313343121.(2024)
2023[ to top ]
-
„Integrative multi-omics analyses of date palm (Phoenix dactylifera) roots and leaves reveal how the halophyte land plant copes with sea water“, The plant genome, e20372-e20372, verfügbar unter: https://doi.org/10.1002/tpg2.20372.(2023)
-
„Differences of nitrogen metabolism in date palm (Phoenix dactylifera) seedlings subjected to water deprivation and salt exposure“, Tree physiology, 43(4), 587–596, verfügbar unter: https://doi.org/10.1093/treephys/tpac145.(2023)
-
„Chronic ozone exposure impairs the mineral nutrition of date palm (Phoenix dactylifera) seedlings“, The Science of the total environment, 862, 160675–160675, verfügbar unter: https://doi.org/10.1016/j.scitotenv.2022.160675.(2023)
2022[ to top ]
-
„Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa“, The New phytologist, 235(5), 1822–1835, verfügbar unter: https://doi.org/10.1111/nph.18205.(2022)
-
„Chronic ozone exposure preferentially modifies root rather than foliar metabolism of date palm (Phoenix dactylifera) saplings“, The Science of the total environment, 806(Pt 2), 150563–150563, verfügbar unter: https://doi.org/10.1016/j.scitotenv.2021.150563.(2022)
2021[ to top ]
-
„Protein expression plasticity contributes to heat and drought tolerance of date palm“, Oecologia, 197(4), 903–919, verfügbar unter: https://doi.org/10.1007/s00442-021-04907-w.(2021)
-
„{PYL}8 {ABA} receptors of Phoenix dactylifera play a crucial role in response to abiotic stress and are stabilized by {ABA}“, Journal of Experimental Botany, 72(2), 757–774, verfügbar unter: https://doi.org/10.1093/jxb/eraa476.(2021)
-
„Date palm responses to a chronic, realistic ozone exposure in a {FACE} experiment“, Environmental Research, 195, 110868, verfügbar unter: https://doi.org/10.1016/j.envres.2021.110868.(2021)
-
„Under salt stress guard cells rewire ion transport and abscisic acid ({ABA}) signaling“, New Phytologist, verfügbar unter: https://doi.org/10.1111/nph.17376.(2021)
-
„Metabolic responses of date palm (Phoenix dactylifera L.) leaves to drought differ in summer and winter climate“, Tree Physiology, verfügbar unter: https://doi.org/10.1093/treephys/tpab027.(2021)
2020[ to top ]
-
„Prospects for the accelerated improvement of the resilient crop quinoa“, J Exp Bot, 71, 5333–5347, verfügbar unter: https://doi.org/10.1093/jxb/eraa285.(2020)
2019[ to top ]
-
„The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration“, Nat Plants, 5(9), 1002–1011, verfügbar unter: https://doi.org/10.1038/s41477-019-0490-0.(2019)
-
„Climate and development modulate the metabolome and anti-oxidative system of date palm leaves“, J Exp Bot, 70, 5959–5969, verfügbar unter: https://doi.org/10.1093/jxb/erz361.(2019)
2018[ to top ]
-
„A Tandem Amino Acid Residue Motif in Guard Cell SLAC1 Anion Channel of Grasses Allows for the Control of Stomatal Aperture by Nitrate“, Curr Biol, 28(9), 1370–1379, verfügbar unter: https://doi.org/10.1016/j.cub.2018.03.027.(2018)
-
„Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa“, Curr Biol, 28(19), 3075–3085, verfügbar unter: https://doi.org/10.1016/j.cub.2018.08.004.(2018)
-
„Physiological responses of date palm (Phoenix dactylifera) seedlings to acute ozone exposure at high temperature“, Environ Pollut, 242(Pt A), 905–913, verfügbar unter: https://doi.org/10.1016/j.envpol.2018.07.059.(2018)
2017[ to top ]
-
„A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value“, Cell Res, 27, 1327–1340, verfügbar unter: https://doi.org/10.1038/cr.2017.124.(2017)
-
„The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel“, New Phytol, 216, 150–162, verfügbar unter: https://doi.org/10.1111/nph.14672.(2017)
-
„Drought enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis“, Plant Physiol, 174, 798–814, verfügbar unter: https://doi.org/10.1104/pp.16.01784.(2017)
-
„Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm)“, PLoS One, 12, e0177883, verfügbar unter: https://doi.org/10.1371/journal.pone.0177883.(2017)
2016[ to top ]
-
„SLAH3-type anion channel expressed in poplar secretory epithelia operates in calcium kinase CPK-autonomous manner“, New Phytol, 210, 922–33, verfügbar unter: https://doi.org/10.1111/nph.13841.(2016)
-
„Acclimation to heat and drought-Lessons to learn from the date palm (Phoenix dactylifera)“, Environ Exp Bot, 125, 20–30, verfügbar unter: https://doi.org/10.1016/j.envexpbot.2016.01.003.(2016)
2015[ to top ]
-
„ss-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells“, J Exp Bot, 66, 6059–67, verfügbar unter: https://doi.org/10.1093/jxb/erv323.(2015)
2014[ to top ]
-
„A single-pore residue renders the Arabidopsis root anion channel SLAH2 highly nitrate selective“, Plant Cell, 26, 2554–2567, verfügbar unter: https://doi.org/10.1105/tpc.114.125849.(2014)
2013[ to top ]
-
„The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis“, Curr Biol, 23, 53–57, verfügbar unter: https://doi.org/10.1016/j.cub.2012.11.022.(2013)
-
„How do stomata sense reductions in atmospheric relative humidity?“, Mol Plant, 6, 1703–1706, verfügbar unter: https://doi.org/10.1093/mp/sst055.(2013)
2012[ to top ]
-
„Poplar extrafloral nectar is protected against plant and human pathogenic fungus“, Mol Plant, 5, 1157–9, verfügbar unter: https://doi.org/10.1093/mp/sss072.(2012)
-
„Poplar wood rays are involved in seasonal remodeling of tree physiology“, Plant Physiol, 160, 1515–29, verfügbar unter: https://doi.org/10.1104/pp.112.202291.(2012)
-
„Poplar extrafloral nectaries: two types, two strategies of indirect defenses against herbivores“, Plant Physiol, 159, 1176–91, verfügbar unter: https://doi.org/10.1104/pp.112.196014.(2012)
2011[ to top ]
-
„Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1“, Sci Signal, 4, ra32, verfügbar unter: https://doi.org/10.1126/scisignal.2001346.(2011)
2010[ to top ]
-
„Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements“, Plant J, 62, 1072–82, verfügbar unter: https://doi.org/10.1111/j.1365-313X.2010.04213.x.(2010)
-
„Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities“, Proc Natl Acad Sci U S A, 107, 8023–8, verfügbar unter: https://doi.org/10.1073/pnas.0912030107.(2010)
-
„Changes in sulphur metabolism of grey poplar (Populus x canescens) leaves during salt stress: a metabolic link to photorespiration“, Tree Physiol, 30, 1161–1173, verfügbar unter: https://doi.org/10.1093/treephys/tpq041.(2010)
-
„Potassium-dependent wood formation in poplar: seasonal aspects and environmental limitations“, Plant Biol, 12, 259–67, verfügbar unter: https://doi.org/10.1111/j.1438-8677.2009.00282.x.(2010)
-
„Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels“, Plant Cell Physiol, 51, 1548–54, verfügbar unter: https://doi.org/10.1093/pcp/pcq102.(2010)
2009[ to top ]
-
„Salt stress affects xylem differentiation of grey poplar (Populus x canescens)“, Planta, 229, 299–309, verfügbar unter: https://doi.org/10.1007/s00425-008-0829-7.(2009)
-
„Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair“, Proc Natl Acad Sci U S A, 106, 21425–30, verfügbar unter: https://doi.org/10.1073/pnas.0912021106.(2009)
2008[ to top ]
-
„VOC emissions of Grey poplar leaves as affected by salt stress and different N sources“, Plant Biol, 10, 86–96, verfügbar unter: https://doi.org/10.1111/j.1438-8677.2007.00015.x.(2008)
-
„Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments“, Plant J, 55, 746–59, verfügbar unter: https://doi.org/10.1111/j.1365-313X.2008.03555.x.(2008)
2007[ to top ]
-
„In planta AKT2 subunits constitute a pH- and Ca2+-sensitive inward rectifying K+ channel“, Planta, 225, 1179–91, verfügbar unter: https://doi.org/10.1007/s00425-006-0428-4.(2007)
-
„Foliar water supply of tall trees: evidence for mucilage-facilitated moisture uptake from the atmosphere and the impact on pressure bomb measurements“, Protoplasma, 232, 11–34, verfügbar unter: https://doi.org/10.1007/s00709-007-0279-2.(2007)
2005[ to top ]
-
„The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development“, Plant Cell, 17, 760–775, verfügbar unter: https://doi.org/10.1105/tpc.104.029124.(2005)
-
„Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex“, Planta, 222, 968–76, verfügbar unter: https://doi.org/10.1007/s00425-005-0038-6.(2005)
-
„Polar-localised poplar K+ channel capable of controlling electrical properties of wood-forming cells“, Planta, 223, 140–8, verfügbar unter: https://doi.org/10.1007/s00425-005-0122-y.(2005)
-
„AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive“, J Gen Physiol, 125, 483–92, verfügbar unter: https://doi.org/10.1085/jgp.200409211.(2005)
2004[ to top ]
-
„The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development“, Plant J, 37, 828–38, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/14996212.(2004)
-
„Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana“, Plant J, 37, 815–27, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/14996216.(2004)
2003[ to top ]
-
„Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress“, FEBS Lett, 554, 119–26, verfügbar unter: https://www.ncbi.nlm.nih.gov/pubmed/14596925.(2003)
-
„Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling“, Plant J, 36, 931–45, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/14675456.(2003)
-
„Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis“, Plant Physol, 133, 528–37, verfügbar unter: https://doi.org/10.1104/pp.103.024240.(2003)
-
„Tumour development in Arabidopsis thaliana involves the Shaker-like K+ channels AKT1 and AKT2/3“, Plant J, 34, 778–87, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/12795698.(2003)
2002[ to top ]
-
„Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis“, Plant J, 32, 997–1009, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/12492841.(2002)
-
„AtKC1, a silent Arabidopsis potassium channel alpha -subunit modulates root hair K+ influx“, Proc Natl Acad Sci U S A, 99, 4079–84, verfügbar unter: https://doi.org/10.1073/pnas.052677799.(2002)
-
„Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis“, Planta, 216, 334–44, verfügbar unter: https://doi.org/10.1007/s00425-002-0895-1.(2002)
-
„KCO1 is a component of the slow-vacuolar (SV) ion channel“, FEBS lett, 511(1-3), 28–32, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/11821043.(2002)
2001[ to top ]
-
„VFK1, a Vicia faba K+ channel involved in phloem unloading“, Plant J, 27, 571–80, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/11576440.(2001)
-
„K+ channel profile and electrical properties of Arabidopsis root hairs“, FEBS Lett, 508, 463–9, verfügbar unter: https://www.ncbi.nlm.nih.gov/pubmed/11728473.(2001)
-
„KAT1 is not essential for stomatal opening“, Proc Natl Acad Sci U S A, 98, 2917–21, verfügbar unter: https://doi.org/10.1073/pnas.051616698.(2001)
2000[ to top ]
-
„Developmental and light-dependent regulation of a phloem-localised K+ channel of Arabidopsis thaliana“, Plant J, 23, 285–90, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/10929122.(2000)
-
„KDC1, a novel carrot root hair K+ channel. Cloning, characterization, and expression in mammalian cells“, J Biol Chem, 275, 39420–6, verfügbar unter: https://doi.org/10.1074/jbc.M002962200.(2000)
-
„GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel“, FEBS Lett, 486, 93–8, verfügbar unter: https://www.ncbi.nlm.nih.gov/pubmed/11113445.(2000)
1999[ to top ]
-
„AKT3, a phloem-localized K+ channel, is blocked by protons“, Proc Natl Acad Sci U S A, 96, 7581–6, verfügbar unter: http://www.ncbi.nlm.nih.gov/pubmed/10377458.(1999)