Publikationen
Publikationen Dr. Kenji Fukushima
- [ 2023 ]
- [ 2022 ]
- [ 2021 ]
- [ 2020 ]
- [ 2019 ]
- [ 2018 ]
- [ 2017 ]
- [ 2015 ]
- [ 2014 ]
- [ 2011 ]
- [ 2009 ]
- [ 2008 ]
- [ 2007 ]
2023[ to top ]
-
„A decaploid pitcher plant genome reveals a novel role for recessive subgenomes“, Nature Plants, 9(12), 1950–1951, verfügbar unter: https://doi.org/10.1038/s41477-023-01563-1.(2023)
-
„Detecting macroevolutionary genotype–phenotype associations using error-corrected rates of protein convergence“, Nature Ecology & Evolution, 7, 155–170, verfügbar unter: https://doi.org/https://doi.org/10.1038/s41559-022-01932-7.(2023)
-
„Transcriptomic heterochrony and completely cleistogamous flower development in the mycoheterotrophic orchid Gastrodia“, New Phytologist, 237(1), 323–338, verfügbar unter: https://doi.org/https://doi.org/10.1111/nph.18495.(2023)
-
„Non-prey biotic interactions in carnivorous plants“, Current Biology, 33(11), R497-R500, verfügbar unter: https://doi.org/https://doi.org/10.1016/j.cub.2023.01.053.(2023)
-
„Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis“, Nature Plants, 9(12), 2000–2015, verfügbar unter: https://doi.org/10.1038/s41477-023-01562-2.(2023)
2022[ to top ]
-
„The digestive systems of carnivorous plants“, Plant Physiology, 190(1), 44–59, verfügbar unter: https://doi.org/https://doi.org/10.1093/plphys/kiac232.(2022)
-
„Genome sequence of 12 Vigna species as a knowledge base of stress tolerance and resistance“, bioRxiv, verfügbar unter: https://doi.org/10.1101/2022.03.28.486085.(2022)
2021[ to top ]
-
„Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species“, The Plant Cell, 33, 1863–1887, verfügbar unter: https://doi.org/https://doi.org/10.1093/plcell/koab073.(2021)
-
„On the origin of carnivory: Molecular physiology and evolution of plants on an animal diet“, Annual Review of Plant Biology, 72, 133–153, verfügbar unter: https://doi.org/10.1146/annurev-arplant-080620-010429.(2021)
-
„A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant Cephalotus follicularis“, Proceedings of the Royal Society B, 288(1943), 10.1098/rspb.2020.2568, verfügbar unter: https://doi.org/10.1098/rspb.2020.2568.(2021)
2020[ to top ]
-
„Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory“, Current Biology, 30(12), 2312 – 2320.e5, verfügbar unter: https://doi.org/https://doi.org/10.1016/j.cub.2020.04.051.(2020)
-
„Calcium dynamics during trap closure visualized in transgenic Venus flytrap“, Nature Plants, 6(10), 1219–1224, verfügbar unter: https://doi.org/10.1038/s41477-020-00773-1.(2020)
-
„Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution“, Nature Communications, 11(1), 4459-, verfügbar unter: https://doi.org/10.1038/s41467-020-18090-8.(2020)
-
„How to Grow a Tree: Plant Voltage-Dependent Cation Channels in the Spotlight of Evolution“, Trends in Plant Science, verfügbar unter: https://doi.org/https://doi.org/10.1016/j.tplants.2020.07.011.(2020)
2019[ to top ]
-
„Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum“, Frontiers in Plant Science, 10, 1274, verfügbar unter: https://doi.org/10.3389/fpls.2019.01274.(2019)
2018[ to top ]
-
„{Markov katana: a novel method for Bayesian resampling of parameter space applied to phylogenetic trees}“, bioRxiv, 250951, verfügbar unter: https://doi.org/10.1101/250951.(2018)
-
„{Carnivorous plant genomes}“, in Ellison, A. und Adamec, L., Hrsg., Carnivorous Plants: Physiology, Ecology, and Evolution, Oxford University Press, 135–152, verfügbar unter: https://global.oup.com/academic/product/carnivorous-plants-9780198779841.(2018)
2017[ to top ]
-
„Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory“, Nature Ecology {\&} Evolution, 1(3), 0059, verfügbar unter: https://doi.org/10.1038/s41559-016-0059.(2017)
2015[ to top ]
-
„Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea“, Nature Communications, 6(1), 6450, verfügbar unter: https://doi.org/10.1038/ncomms7450.(2015)
2014[ to top ]
-
„Molecular phylogeny determined using chloroplast DNA inferred a new phylogenetic relationship of Rorippa aquatica (Eaton) EJ Palmer & Steyermark (Brassicaceae)—lake cress“, American Journal of Plant Sciences, 05(01), 48–54, verfügbar unter: https://doi.org/10.4236/ajps.2014.51008.(2014)
-
„Adaxial–abaxial polarity: The developmental basis of leaf shape diversity“, genesis, 52(1), 1–18, verfügbar unter: https://doi.org/10.1002/dvg.22728.(2014)
2011[ to top ]
-
„Contrasting patterns of the 5S and 45S rDNA evolutions in the Byblis liniflora complex (Byblidaceae)“, Journal of Plant Research, 124(2), 231–244, verfügbar unter: https://doi.org/10.1007/s10265-010-0366-x.(2011)
2009[ to top ]
-
„Drosera rotundifolia and Drosera tokaiensis suppress the activation of HMC-1 human mast cells“, Journal of Ethnopharmacology, 125(1), 90–96, verfügbar unter: https://doi.org/10.1016/j.jep.2009.06.009.(2009)
2008[ to top ]
-
„{Tandem repeat rDNA sequences derived from parents were stably maintained in hexaploids of Drosera spathulata complex (Droseraceae)}“, Cytologia, 73(3), 313–325, verfügbar unter: https://doi.org/10.1508/cytologia.73.313.(2008)
-
„{Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses}“, Journal of Agricultural and Food Chemistry, 56(11), 4004–4011, verfügbar unter: https://doi.org/10.1021/jf800052y.(2008)
-
„Somatic chromosome differentiation in three species of the Byblis liniflora complex (Byblidaceae)“, Chromosome Botany, 3(3/4), 95–99, verfügbar unter: https://doi.org/10.3199/iscb.3.95.(2008)
2007[ to top ]
-
„A comparative study of karyotypes in two species of Byblis (Byblidaceae)“, Chromosome Botany, 2(1), 39–43, verfügbar unter: https://doi.org/10.3199/iscb.2.39.(2007)